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Summary

Confidence intervals for some functions of variance components associated with
non-normal balanced one-way Model II are obtained using two moment approxi
mation.
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Introduction

Approximateconfidence intervals on variancecomponents, with normal
ity, have been obtained by several workers. Anderson and Bancroft [1],
Scheflfee [8], Graybill [7], Bogyo and Becker [4] and Searle [9], among
others, however, derive exact confidence intervals for functions of variance
components in a balanced random effects model relying on a property of
classical i^-distribution. Atiqullah [2] derives asymptotic confidence inter
vals for a ratio of variance components in samples from symmetrical
populations and infers that the intervals are insensitive to kurtosis of
random eS"ects. Snedecor and Cochran [11] surmise that for positive
kurtosis of random effects the confidence intervals for inter-group variance
component are too narrow. The inferences of Atiqullah and of Snedecor
and Cochran are not commensurate with the power of variance ratio test
in random models (Tan and Wong [12], and Siaghal and Singh [10]).

This paper considers approximate confidence intervals for certain func-
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tions of variance components and aj associated, respectively, with the
non-normal group-effects (at) and error-effects (e,j) in the model

yij = m + ai + en, (1.1)

(i= 1,2 g andj= 1, 2, . . . , r)
where m is an additive constant and o/ and e^j are independent random
samples from infinite moderate non-normal populations. To arrive at the
confidence intervals, the non-normal sampling distribution of the ratio of
mean squares associated with (1.1) has been approximated to the F-distri
bution using first two moments. Computed results in Section 4 charac
terise the behaviour of the violation of normality assumption on the
confidence intervals.

2. Moment Approximation to the Sampling Distribntion of
Variance Ratio

For F' = s^jsl, (2.1)

where and are 'between-groups' and 'within-groups' mean squares
for (1.1) with p = (g — I) and q= {N —g) degrees of freedom, respect
ively, the mean and variance are directly derivable from (2.1) of Singhal
and Singh [10], after heavy and lengthy simplifications, as :
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where B = N = gr, and A3 and A4 are standardized third and
fourth cumulants associated with a,- and eij.

The expressions (2.2) and (2.3) agree exactly with the corresponding
expressions of Gayen [5]* for the balanced one-way fixed effects model
when B — 0 (i.e. = 0).

♦The factor 2 (2p -f 7) appearing in his variance expression for the cqefiBcient of
should be 8 (2p + 7).



NON-NORMAL CONFIDENCE LIMITS ^

The sampling distribution of (2.1) for non-normal random effects is
approximated by considering the ratio F'}k to follow the central f-distri-
bution with s and q degrees of freedom. On equating /^i/Zjand (^2/^* to the
mean and variance of the Snedecor's F-distribution we get, after simpli
fication,

k=(q-2)

and

^_ 2(q - 2) ii'r' (2.4)
(?-4)ix,•

The approximation (see Tiku, [13] gives power of the test (see Singhal
and Singh, [10]) approximately equal to

W, F) dF = h(is, hq), (2.5)
0

where * = 9(1 + B)l(q(l + P) + sFalk), k and s are provided by (2.4),
I(a, b) is the Incomplete 5-function and Fa. is the a% critical point of the
traditional F-distribution with s and q degrees of freedom. To obtain
critical points of the F-distribution either interpolation or next higher
integral value for fractional values of s may be considered. The agreement
between the approximation (2.5) and the exact power of the test is found
close even for small samples e.g. when g' = 3, r — 5, = 0.25,
a = 0.05, A48 = 1.0 and for s = 1.8134, as the integral on evaluation
yielded a value 0.2125 whereas the exact power of this test was 0.2159.

The next section provides confidence limits for different functions con
sidered by various workers.

3. Confidence Limits on Functions of Variance Components

The Table 1 provides (1 —«)% confidence limits for and its functions
with o2 for normal behaviour of random effects.

Here a is the level of significance, Fi and F2, respectively, are lower and
upper (1 — ia)% and (i<*)% critical points of the F-distribution with p
and q degrees of freedom.

In order to investigate the effects of deviation from normality assump
tion on the confidence limits for the parameters in Table 1 it would be
necessary to interpolate Fi and F3 for s and q degrees of freedom, since s
will, generally, be fractional.

The magnitude and direction of change on the confidence intervals due
to non-normality in randomeffects is illustrated through numerical resu}tg
in what fpllows,
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TABLE 1-(1 - a)% CONFIDENCE LIMITS

Parameter Lower limit Upper limit

"I (•r| - si F2)lrF, (s^ - si Fi)/rFi

(Anderson and Bancroft, [1], p. 322)

"l/oj) (^2 - si F^)lrsl {si - si Fi)lrsj Fi

(SchefFee, [8], p. 229)

ral Fi rsl F,
R(.= "11 {al+cD

'(= "1 / ("a + "e)

4 + (r - 1) si Fi 4 +ir- 1) si F,

(Graybill, [7], p. 379)

4-SIF2 s^,-slF,

+ (r - 1) sj F, s^ + (r - 1) si Fi

(Searle, (9)

4. Computations of Results and Discussion

Considering certain a priori values of parameters computations of (2.2)
and (2.3) and wlience of (2.4) were carried out. To obtain 90% confidence
limits for the parameters in Table 1, the lower and upper critical points
of i''-distribution for fractional s in combination with q were interpolated
using four point Lagrangian interpolation formula. Incorporating these
critical values confidence intervals for the parameters w and R (the
limits for t may be obtained using the relation t = \ —R) were comput
ed. The values of ^.nd Se were obtained from the corresponding values
of aj and where csl = (s^ —s^jr and =5?. To save space detail
ed results have not been given here but a few, for (i) g = 5, r = 5, (ii)
g = 9, r = 3 and (iii) g = 1, r = 5 and for varying and s^, are sum
marised in Table 2. The values of non-normality parameters were con
sidered within Barton and Dennis [3] limits so that the Edgeworth series
representation of the density function of random effects is unimodal and
positive definite.

Based on the computed results, the pattern of change in confidence
limits due to the non-normality parameters may be put to record as under.

(a) The confidence limits are insensitive to the skewness in error effects



non-normal confidence limits 5

since there is no appreciable change in s when compared to p due
to Age (Table 2). The expressions (2.2) and (2.3) are independent
of A,a.

(b) For A40 > 0, the confidence intervals are remarkably wider and
for A^o < 0, these are appreciably narrow in comparison to when
A40 = 0. For example, when g- = 9, r = 3, = 13.5 and - 1.5,
the 90% limits for <t2, w and are (0.765, 35.529), (0.510, 23.686)
and (0.040, 0.662) for A^,. = 2.4. Correspondingly for A^a = —I.O
these are (1.146, 12.981), (0.764, 8.654) and (0.104, 0.567) in com
parison to the normal limits (0.997, 17.630), (0.665, 11.754) and
(0.078, 0.601). For non-normal error effects, though the direction
of the effect was, in general, similar to that of the group effects but
magnitude of displacement in the limits was of lesser degree.
Further it was interesting to note that for small values of and
s^, and for certain combinations of r and g the direction of change
was in reverse order for kurtotic error effects e.g. when g = 5,
r = 5, if = 3.5 and = 2.0. The intervals for positive parameter
are negative. For a discussion on this aspect the reader may refer
to Searle [9].

Results show disagreement with Snedecor and Cochran [11], for the
limits on where they conjecture that for positive kurtosis of random
effects the limits would be 'too narrow' and with Atiqullah [2] with regard
to the sensitiveness of the limits on oll<y^to the kurtosis. The observations
of these workers are at variance with the power of the test (see Tan and
Wong, [12] and Singhal and Singh, [10]).

Snedecor and Cochran's analytical inference on confidence intervals is

correct only in respect of the direction of variance of for positive kur
tosis but is erroneous when it comes to the size of the confidence inter

vals. Atiqullah arrived at confidence limits of the through asympto
tic results and used smaller numerical values of the estimators for com

putations which are not, probably, suSiciently large to reveal the magni
tude of the effect of kurtosis on the confidence limits.

Further to provide computational ease for applications, the expressions
(2.2) and (2 3) may bb approximated to 0(A'̂ ~^) as :

.;=(! +« (l +^+^^)+(5 +^)^
- 45 ^ (2.2 bis)



TABLE 2—THE 90% CONFIDENCE LIMITS FOR FUNCTIONS OF VARIANCE COMPONENTS FOR
NORMAL AND NON-NORMAL UNIVERSES

sj Parameter Normal

3.5 2.0

15.0 2.5

21.5 1.5

2.9 2.0

"a

W

R

"l
W

R

"l
fV

R

W

R

(-0.201, 5.592)

(-0.100, 2.796)

(0.263, 1.112)

(0.354,25.180)

(0.741,10.072)

(0.090, 0.876)

(0.923, 36.509)

(0.616,24.339)

(0.039, 0.619)

(-0.345, 3.228)

(-0.172,1.614)

(0.383, 1.208)

-1.0 2.4 -1.0

^4o
2.4 0.25

Case (i) g = 5 and r = 5

(-0.201.5.608) (-0.200,5.542) (-0.196,4.960) (-0.211,7.412) 3.978

(-0.100,2.804) (-0.100,2.771) (-0.098,2.480) (-0.105,3.706) -

(0.263, 1.112) (0.265, 1.111) (0.287,1.109) (0.212,1.118) —

(0.375, 22.348)

(0.150, 0.894)

(O.IOl, 0.870)

(0.966,31.041)

(0.644, 20.694)

(0.046, 0.608)

Case (»•) g =

(0.318, 31.347)

(0.127, 12.539)

(0.074, 0.887)

(0.857, 48.899)

(0.571, 32.599)

(0.030,0 .636)

9 and r = .3

(-0.346,3.284) (-0.342,3.102)

(-0.173, 1.642) (-0.171, 1.551)

(0.378,1.209) (0.392, 1.206)

(0.440, 16.373)

(0.176, 6.549)

(0.132, 0.850)

(1.091,20.945)

(0.727,13.963)

(0.067, 0.579)

(-0.342, 3.102)

(-0.171, 1.551)

(0.392, 1.206)

(0.2;0,70.088) 4.013

(0.088,28.035) —

(0.034,0.919) —

(0.639, 138.410) 4.034

(0.459,92.273) —

(0.011,0.685) —

(-0.352,3.547) 7.859

(-0.176, 1.774) —

(0.360, 1.214) —
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10.0 2.5

13.5 1.5

3.5 2.0

15.0 2.5

21.5 1.5

W

R

a

W

R

"'a

w

R

W

R

"l

W

R

(0.276, 12.597)

(0.110, 5.039)

(0.166, 0.901)

(0.997,17.630)

(0.665,11.754)

(0.078, 0.601)

(0.299, 11.712)

(0.119,4.685)

(0.176, 0.893)

(1.050, 15.652)

(0.700, 10.435)

(0.087, 0.588)

(0.235, 14.514)

(0.094, 5.805)

(0.147, 0.914)

(o!911, 22.000)

(0.607, 14.667)

(0.064, 0.622)

(-0.159, 3.151)

(-0.079.1.576)

(0.388, 1.086)

Case (/•«) g = 7 and r = 5

(-0.158, 3.135) (-0.159, 3.182)

(-0,079, 1.568) (-0.080,1.591)

(0.389, 1.086) (0.386, 1.087)

(0.534, 14.719)

(0.213, 5.888)

(0.145,0.824)

(1.181,21.514)

(0.788, 14.343)

(0.065,0.559)

(0.556, 13.578)

(0.222. 5.431)

(0.155, 0.818)

(1.226, 19.317)

(0.818, 12.878)

(0.072, 0.550)

(0.492, 17.272)

(0.197, 6.909)

(0.126, 0.836)

(1.104,26.525)

(0.736, 17.683)

(0.054, 0.576)

•Value of s for X,, = 0.5.

(0.345, 10.222)

(0.138, 4.089)

(0.196, 0.879)

(1.146, 12.981)

(0.764, 8.654)

(0.104, 0.567)

(-0.153, 2.873)

(-0.077, 1.436)

(0.410, 1.083)

(0.635, 10.632)

(0.254, 4.253)

(0.190, 0.798)

(1.381, 14.163)

(0.921, 9.442)

(0.096, 0.521)

(0.152,33.045) 7.986

(0.061,13.218) —

(0.070,0.943) —

(0.765,35.529) 8.038

(0.510,23.686) —

(0.040,0.662) —

(-0.171 ,3.913)

(-0.085, 1.956)

(0.338, 1.093)

(0.373, 31.013)

(0.149, 12.405)

(0.075. 0.870)

(0.900, 56.130)

(0.600, 37.420)

(0.026, 0.625)

5.978

6.014

6.026
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and

N

+^^)^+{p(. +|)-2(.+«(fe +3)

+ V̂ ") +<' + ('«+ " +
+ 8(1 + B) (2fe + 2) - fe + 3) (1 + £)) (2.3 bis)

Besides, the estimates of A3 and as suggested by Geary [6], in terms of
Fisher's ^-statistics can be used for the calculation of confidence limits

on a parameter.
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